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The intermolecular energy between two identical subsystems may be calculated 
from symmetry deloealized MO's resulting for instance from a preliminary 
SCF calculation of the supersystem. Then each second-order energy correction 
mixes intramolecular correlation, R -6 intermolecular dispersion energy, and 
R-3 components. The R-3 components disappear through subtle cancellations. 
The shifted Epstein-Nesbet energy denominators introduce an artificial second- 
order intermolecular R -  1 component, which would be cancelled by off-diagonal 
third-order terms, as well as a bad asymptotic limit at infinite distances. The 
R-1 artifact will also occur in strong symmetrical chemical bonds calculated 
in the Epstein-Nesbet perturbation scheme from delocalized MO's. These 
defects will occur in all variational approximate CI techniques which neglect 
off-diagonal elements between delocalized doubly excited determinants. These 
artifacts are avoided when using the Moller-Plesset definition of the zeroth order 
Hamiltonian or when starting from (SCF) localized MO's (even in the Epstein- 
Nesbet perturbation). The discussion is exemplified on an accurate ab initio 
calculation of the Ar.~ molecule. 
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1. Introduction 

The ab initio calculation of Van der Waals intermolecular dispersion energies is not 
easy. The connection between the long range perturbative treatment of inter- 
molecular forces [1 ] and the short range repulsive region was difficult to establish 
in a clear way [2]. Practical approaches have now been proposed to solve this 
problem (for a review see Ref. [3]). All of them start from localized descriptions of 
the subsystem, starting either from the properly orthogonalized SCF MO's of the 
isolated molecules [4] or from the localized SCF MO's of the supermolecule [5-9]. 
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It may seem rather strange to start from symmetry adapted MO's of the supersystem 
in symmetric intermolecular problem, such as a homonuclear diatomic problem, 
since each MO is then spread over both systems, preventing the useful partition of 
the correlation corrections into intra and inter molecular contributions. In some 
cases, for instance in excited states studies, the use of symmetry MO's may be 
recommended, and the purpose of this paper is to analyze the behaviour of intra- 
molecular and intermolecular contributions when they are hidden under symmetry 
corrections. 

2. Perturbation Expansions, Concepts and Illustrative Results 

Let us consider two identical subsystems A and B. Let us define a set of SCF MO's 
for each of them {~0~,b}. A proper orthogonalization of these MO's will lead to a set 
of localized MO's 

+ 

which only differ from the original SCF MO's through overlap second order effects. 
Associating two by two these localized MO's one gets symmetry adapted MO's for 
the supersystem 

= + 

= - 

The same transformation would be possible for the virtual MO's. The ground state 
determinant 

N 

t = 1  

N 

= d~f-~ cp~+~o i_ 
t = 1  

already contains the repulsive and electrostatic energy components. If an SCF 
adjustment of the supermolecule MO's has been performed it also gives the polariza- 
tion and charge transfer corrections. Perturbing the ~O<A+B) zeroth order wave 
function will give intra and inter molecular correlation effect. One may recall the 
various perturbation expansions generally used in the correlation problem. The 
Brillouin-Wigner perturbation is known to give an unsatisfactory N dependence 
[10]. In the Rayleigh-SchrSdinger expansion, two partitions of the total Hamilton- 
ian are generally used [11]. 

In the Moller-Plesset definition [12], the Ho Hamiltonian is the sum of Hartree-Fock 
monoelectronic operators. If the e{s are the diagonal Fock operator elements for 
all MO's 

Ho = ~. e,a;aa, + C. 
i 

In this partition the energy denominators always are differences between the holes 
and particles Fock energies. The linked cluster theorem is demonstrated in this 
definition of Ho. 
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The Epstein-Nesbet definition [13, 14] of Ho consists in partitioning the total 
Hamiltonian into a diagonal H0 and a non-diagonal V operator. I f  I is a typical 
determinant of the CI basis set 

Ho]I) = (I]HII)II) 11o = ~ (IIH]I)II)(I] 
i 

(llVlJ) = ( I l n l J ) ( 1  - ~,,). 

The energy denominators are then ~ shifted" energy denominators 

( O l n o l O )  - < 1 1 H o 1 1 )  = ( O l n l O )  - (ZlnlZ). 

Both partitions may be used either on localized or delocalized MO's. The localized 
picture is the most logical for intermolecular problems. The intramolecular double 
excitations 

= j:  t : \  
ia ka / 

give most of the intramolecular correlation corrections at the second-order level, 
while the intermolecular double excitation, which are simultaneous single excita- 
tions on both subsystems 

lead to the Van der Waals dispersion forces. This approach may be used in 
numerical calculations, sometimes only considering the second class of excitations 
[5, 6], sometimes considering simultaneously intra and inter double excitations 
[8, 9]. 

While we were involved in excited states studies of the Ar2 dimer, a ground state 
calculation was performed using symmetry adapated MO's in a rather large basis 
set [15]. The core electrons were represented through a non-empirical pseudo- 
potential determined according to the Barthelat and Durand method [16]. Fig. 1 
represents the Hartree-Fock and second-order corrected energy variations in b o ~  
definitions of H0, while the experimental well depth is about 100 cm -1 at 7.2 a.u. 
[17]. These results are also reported in Table 1 with, in the last column, twice the 
calculated energy of an isolated argon atom. Our purpose is not to discuss the slight 
discrepancy between experiment and our 2nd order MPRS result, which may result 
from the so-called "basis set extension effect" [18], artificially stabilizing the inter- 
molecular situations by offering to the electrons of an atom a possible delocalization 
in the virtual MO's of its partner. The points under discussion here are: 

the huge discrepancy of the Epstein-Nesbet 2nd order result, for which the well 
depth is exaggerated by one order of magnitude, 

the bad convergence of this Epstein-Nesbet molecular energy towards the sum of the 
energies of two isolated atoms. 

The next section offers an explanation of these phenomenons and shows that both 
derive from shifted Epstein-Nesbet denominators. 
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Fig. 1. Interatomic potential curves for the Ar2 problem (non-empirical pseudopotential, after 
a 2nd order Rayleigh-SchrSdinger calculation, see Ref. [15]) 

3. The M.P. and E.N. 2rid Order Results for the He2 Problem 

In order to simplify our problem, let us consider two He atoms, at such a distance 
that the interatomic overlap may be neglected. The interatomic problem will be 
treated simultaneously in the equivalent delocalized symmetry adapted and 
localized representations. The MO's may eventually be distorted through polariza- 
tion effects. The set of localized MO's, sa, sb, is equivalent to the %, e~ set 

[%= + 
~ .  ( s :  - -  s~) IM"2J  =- LSbJ 60 --Io-.<~<,o-u~,d = __+ Is:,~j,,m<~l. 

As a typical correlation effect we shall consider the correlation involving the 2p 
AO's. For the sake of simplicity we only introduce one set (for instance 2px) of these 
AO's. The same transformation is possible for these virtual MO's 

I-:0= o. . : -  7 =_ F ,  ol 
/ rr, (2p: + 2pb)l~/]J L2pbJ" 
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It is well known that the subspace of the doubly excited state is stable under any 
unitary transformation of the occupied MO's among themselves and under such a 
transformation among the virtual MO's. Therefore if the doubly excited states 
built from delocalized (resp. localized) MO's are labelled [I> (resp. II'>), 

~', ]I><I[ = ~', 1I'><I'1 

hence 

~' <OIHID</IH[O> = ~' <OIHIV><VIH[O>. 
I I" 

One recognizes here the numerators of the second-order energy corrections and 
therefore a difference between the localized and delocalized pictures in a given 
definition of the perturbation expansion may only result from the energy de- 
nominators. Regarding these energy denominators, the neglect of intermolecular 
overlap implies a strict degeneracy of the Fock operator 

S a g  : EO'~ = eS a = 85b = 8 

8~g  = 8XU : 8 2 ~  a = 8 2 p  b : 8 t .  

In such a case, all the energy denominators of the Moller-Plesset partition are 
identical 

<OlHo[O> - <llHoll> = <o'IHolO'> - <I'lUo[l'> = 2(e - 4)v I, I'. 

It is therefore evident that the Moller-Plesset result is independent on the localiza- 
tion of the MO's. This is a special case of a well known result; the M.P. expansion 
is stable under any unitary transformation within the degenerate sets of MO's, as 
directly seen from its explicit expression. 

3.1. Appearance and Disappearance of R- s Terms in the Delocalized Picture 

It may be interesting to see the way by which such an invariance is obtained. 
In our simplified problem, ten doubly excited determinants have to be considered 
in the symmetry-adapted representation, the interaction of which with 10> is 
given 

(~.-~ =Y <O]Hl/> = 

(~. -+ =.)~ = 

2 ;? <o i- i,> 11> 

(%~. _+ ~ . = . ) j  c 

K~q~g = (K~.~ - (sapa, sbpb))/2 
Ko.~. = ( K -  a/Ra)/2 
K~.~o = (K + a/R3)/2 
K,o~ . = (K  + a/RS)/2 

(%%, %%) = ( K -  a/Ra)/2 

(%,r,, %%) = (K + a/Ra)/2 
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The previous calculations neglect integrals with asymptotic exponential decreasing 
behaviour. Summing up the squares of all these numerators, one gets 

2K2/2(e - d) which gives the intraatomic correlation energy of both atoms, 

4(a/Ra)2/2(e - e') which gives the R-6 Van der Waals interatomic disper- 
sion energy. 

This result may be obtained directly in the localized picture since the only interact- 
ing doubly excited states are (excluding those giving exponential-like decreasing 
numerators 

'(s~---~2P=)='~ < O ' l n l r >  = g 
(s~ ~ 2pb)2J 

1i, ) = (sJb -+ 2p~2pb)| 
(gJb -+ 2fi=2fib) t, (0,1HII '3 
(s=gb --* 2p,2ffb)| . . . .  = (s~p=, &Pb) = a iR a 

(J.sb --~ 2/5=2pb)J 

In the localized description the separation between intra and interatomie contribu- 
tions is direct, while the delocalized picture mixes them. Every delocalized doubly 
exci ted determinant brings a part o f  intra, and interatomie correlations, plus an R -  a 
artificial component, the sum of which cancels. The cancellation is obtained only f rom 
the summation o f  all determinants; a method which would neglect some o f  them f rom 
energy criteria such as is frequently done in CI approximations might introduce these 
R -  a terms. 

3.2. Appearance o f  R - 1  Terms in the Epstein-Nesbet Second-Order Energy 
in the Deloealized Picture 

Let us turn now to the change due to the energy shift in the E-N perturbation. For 
the first excited determinant [I) = (% --> %)2 

<OIHIO> - <ZlHIZ> = 2(e -- e') + 4J,,.~g - S,,~g - J~..g - 2K~... 

4,=~ = (~0%, %%) = (s~ + sg, 2p~ + 2p~)/4 = (Jsap~ + J~op,)/2. 

The second Coulombic integral may be approximated by 1/R. In the same way 

Jr.vo + 1/R 

While 

K < p =  - aiR a 
K,,=, = (%%, %%) = 2 

Therefore 

AEEN = 2(e -- e') -- J , , J 2  -- J;=p=/2 + 2J~,pa - K~,= + 1/R 

AE~N= 2(E--e ' )  + C + R -~ + O(R -=) 
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where C is an intraatomic constant and B another constant since ~r~ = e~ = 
(s~ + s~)/2 and 7r~ = ~r~ = (2p] + 2p~)/2 

Jo~.~ = J ~  = J ~  = J , ~ ,  J~o~ = J ~  = Jo . . . .  

J~g~ = J ~  = J ~  

and all the denominator energies for the closed-shell doubly excited determinants 
are equal. I f  one neglects the R -2 and R -3 terms, the denominators relative to the 
open shell doubly excited determinants have exactly the same expression, except 
for the (%r ---> %r and (%r --> %7r~) double excitations but then the associated 
numerators are zero in our approximation, and the Epstein-Nesbet second order 
correction is therefore equal to 

2K 2 a 2 
e~N = AEef--~ + R 6 AEet-----~ with AEoft = AEMp + C + R -~ 

= (AE,,~ + C)(1 + R-V(~EMp + C)). 

AEMp + C = 2(e - e') + C is the intraatomic double excitation transition energy 
for R = oo. Therefore 

2K2 [ R -~ ] a2 
egN - AEMe + C 1 AEm, + C + d~(R-2) + R6(AEMp+e) + d~(R-7)" 

The first term 2K2/(AEm, + C) is the (R = oo) intraatomic Epstein-Nesbet 2nd 
order correlation energy. But it is multiplied by a factor larger than 1 which in- 
creases as R -~, leading to an artificial stabilization of the ground state. This 
artificial R -~ component, is clearly due to the ionic components of the doubly 
excited determinants. 

The localized Epstein-Nesbet treatment of our problem would not introduce this 
R-  ~ component, which is a pure artifact. Of  course the MP treatment would intro- 
duce this term as a third-order correction involving the diagonal values of  the 
perturbation operator 

( O I H I I ) ( I I V I I ) ( I I H I O ) / A E  ~. 

But this third-order contribution would be cancelled by other third order R-  ~ 
components. It would be too lengthy to show the complete analytical cancellations 
occurring at the third order among R-  ~ terms. Let us illustrate only the appearance 
of positive R-  ~ third-order components 

( o l n l I ) (  I l a l J ) (  J l a ] o )  
(E 0 - -  E i ) ( E o  _ E i) I = (% ---> ~ro) 2, J = (~ga,, --> ~o~ru). 

,r. o~ ( I I H I J )  = -(%~r~, %a~) 

= -(2p~ - 2p~, 2s~ - 2s~) 
"rrr o'r "fro ~g  = - -  ( J s a 2 p  a - -  R -  1). 

This diagram leads to a repulsive (K2/AE2)R - t contribution, partly cancelling the 
previously noticed R-  ~ attractive component. 
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3.3. Bad Asymptotic Convergence of the Molecular Energy towards the Atomic 
Situation with the Epstein-Nesbet Partition 

We wrote previously, up to the second order of R-1, the Epstein-Nesbet denomina- 
tors. At infinite internuclear distance they become: 

AEEN = 2@ - e') 2 2 - -  + 2J"aP~ - Ks,p~. 

And all non-zero numerators are equal to K~,p~ Then the Epstein-Nesbet second 
order asymptotic correction is: 

E N  ~-- 2@ - g) + C 

Let us come back to the isolated atom. In our model the only double excitation is 
(sa ___~pa)2. Then for one atom 

K2 
e ( 2 )  ~ SaPa 

For two atoms, we obtain: 

2K~op~ 
s(~  = 2(8 - g )  + 2C 

Then the molecular energy, for large R, does not converge to twice the atomic energy 
derived with the same treatment, but towards a shifted atomic energy. Of  course 
this artifact does not happen in the Moller-Plesset partition for all denominators 
are equal. The C constant being positive we can plot the following scheme for the 
asymptotic situation 

e~p 

egN molecular 

e[N atomic x 2. 

4. Discuss ion  

We have plotted on Fig. 2 the R-1 dependence of the difference between the Moller- 
Plesset and Epstein-Nesbet energies. The result is a very good linear fit, as predicted 
by our simple theory. 

The relative positions of our calculated results at infinite internuclear distance are 
also in agreement with the theoretical conclusions of Sect. 3.3. 

This numerical example, enlightened by our brief algebraic derivation on a simplified 
model problem, allows us to draw a series of  conclusions: 

1) No problem will arise when the treatment is done as a localized representation, 
whatever the definition of the zeroth order Hamiltonian. This is a supplementary 
argument in favour of  localized pictures, which closely follow the physical local 
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Fig. 2. R dependence of the differences between the Moller-Plesset and Epstein-Nesbet 2nd 
order connections 

interactions and avoid, in our case, the R-3 components, the R-  1 behaviour of 
some " in t ra"  correlation contributions, and the bad asymptotic convergence. 
For localized pictures the possible superiority [11] of the Epstein-Nesbet parti- 
tion holds. 

2) If  one works in a delocalized picture, the Moller-Plesset partition proves to be 
qualitatively superior to the Epstein-Nesbet one, since it does not introduce the 
R-  ~ attractive energies which would be cancelled at the 3rd order level and con- 
verges to be right atomic limit. This result is related to a well known property 
of the Moller-Plesset Hamiltonian, namely that it is invariant under unitary 
transforms of degenerate orbitals, while the Epstein-Nesbet Hamiltonian is not. 
This fact explains the bad asymptotic convergence, but our analysis holds when 
the degeneracy between orbitals is split, and is therefore much more general. 

As concern the perturbation schemes (Brillouin-Wigner as well as Rayleigh- 
SchrSdinger), the situation may be summarized as follows 

M.P. E.N. 

localized MO's O.K. possibly superior 
delocalized MO's O.K. --- localized wrong 

3) Our conclusions go far beyond the perturbative procedures, it also concerns the 
(necessarily approximate) variational CI procedures, as far as they do not allow 
the cancellation between the R-1 diagonal and off-diagonal third-order contri- 
butions. Off-diagonal elements are neglected for instance in the Ak and Bk 
Shavitt's procedures [19]; the hole-hole interactions are neglected in the (IEPA) 
independent electron pair approximation [20-22], and in practice the neglect of 
the off-diagonal " ta i l "  elements in Segal et al. procedure [23] will lead to the same 
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defects. Adding independent contributions E, of the various excited deter- 
minants I I)  to a previously selected subspace, as handled in the selection and 
extrapolation procedure of the M R D C I  [24] technique, would also introduce this 
R -  1 artifact. 

4) One may demonstrate that such an effect may occur in excited states studies. 
This is the reason why our CIPSI calculation of the excited states of the Ar2 
dimer [15] was performed using the Moller-Plesset definition of H0, while our 
previous similar studies used the E.N. formalism. 

5) This artifact is not limited to intermolecular problems, it should be present in 
strong molecular bonds as well. Let us consider for instance the F2 molecule; the 
lone pairs of the F atoms play the same role as the basic electron pairs of our 
previously studied model problem. When correlating these electron pairs in a 
delocalized scheme, they enter symmetrical MO's. For ,r lone pairs 

and the double excitations towards vacant MO's built from, let us say, 3p AO's 
will introduce the same R-1 artifactual component if they are not handled in a 
correct fashion, allowing the cancellation between diagonal 

(0[ V[I)(I I g[I)(I[ V[ O)/AE~ 

and off-diagonal 

<0] V[Z)< Z[ V I J)(  J [ V] O) /AE~AE, 

third order corrections. These R -~ artifacts may be smaller than the resonance 
interactions which build the deep hole of an actual chemical bond, but they may 
be present and significantly lower the energy minimum and bond distance. 

One may notice that the above discussed problem no longer holds for unsym- 
metrical intermolecular problems since their canonical MO's tend to be localized. 
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